
J. Fluid Mech. (1997), �ol. 350, pp. 1–27. Printed in the United Kingdom

# 1997 Cambridge University Press

1

Localized mixing due to a breaking internal wave
ray at a sloping bed

By I. P. D. DE SILVA†, J. IMBERGER  G. N. IVEY

Centre for Water Research, Department of Environmental Engineering,
The University of Western Australia, Nedlands, Western Australia 6907

(Received 18 March 1996 and in revised form 13 June 1997)

A laboratory experiment was conducted to investigate the characteristics of turbulence
generated by an internal wave ray breaking on a sloping bed. The width of the incident
wave ray was small compared to the bed length, so that an isolated turbulent patch was
generated by the breaking process, a configuration unique to the present study. The
parameter range covered subcritical, critical and supercritical frequencies. Flow
visualization and velocity measurements revealed that near critical conditions the flow
was confined to a narrow region above the bed and, contrary to expectations, critical
waves showed a weak turbulence field. Subcritical and supercritical reflection resembled
wave–wave interaction between the incident and the reflected waves and showed
comparable centred displacement lengthscales. As the incident waves became
progressively supercritical instabilities were first initiated away from the bed. For
supercritical waves the centred displacement lengthscale and the turbulent Reynolds
number both increased steadily up to about γE 2, after which they started to decrease
(γ¯ω}ω

c
, where ω is the frequency of the incident wave and ω

c
¯N sinβ is the critical

frequency for an ambient uniform stratification of magnitude N and a bed angle of β).
For subcritical waves an increase in the centred displacement lengthscale and the
turbulent Reynolds number was also observed. The mixed fluid generated at the
boundary collapsed into the fluid interior in the form of a horizontal two-dimensional
viscous–buoyancy intrusion: the efficiency of mixing was, however, very small and no
measurable change in the mean density gradient was observed over the duration of the
experiments.

1. Introduction

With recent advances in field measurements the importance of boundary mixing as
a means of nutrient circulation in the hypolimnion of lakes has become increasingly
evident. Many observations have been reported supporting the existence of a turbulent
benthic boundary layer in lakes (Wuest et al. 1994; Lemckert & Imberger 1995) and
in oceans (Wunsch & Hendry 1972; Eriksen 1982, 1985; Wolanski 1987; Thorpe, Hall
& White 1990; Toole, Polzin & Schmitt 1994; White 1994; Van Haren, Oakey &
Garrett 1994; Ledwell & Hickey 1995). A number of plausible mechanisms can give
rise to boundary mixing: bottom intrusions over topographically rough boundaries,
turbidity currents, river inflows, basin-scale internal seiches, long internal Kelvin and
Poincare! waves, and small-scale internal gravity waves are all possible driving
mechanisms. Imberger (1995) identified some of these mechanisms from a field study
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of lake Biwa, Japan. It has been suggested (eg. Ivey & Nokes 1989; Garrett,
MacCready & Rhines 1993) that breaking internal waves on slopes are the most likely
driving mechanism for the benthic boundary layer, at least in the deep ocean.

In the present study we are only concerned with the turbulence and mixing
characteristics generated by breaking internal gravity waves at a sloping bed. There is
a wide variation in the bed slopes encountered in natural environments. In lakes bed
slopes are in the range of 2°–20° (Wuest et al. 1994; Lemckert & Imberger 1995). In
the ocean the r.m.s. slope of the sea bed is roughly 4°, but in the vicinity of seamounts
slopes can be considerably higher in the range 6°–26° (Bell 1975). The benthic
boundary layer acts as a buffer between the bulk lake interior and the very thin,
nutrient rich, sediment interface (Baccini 1985). It is of immense importance for
biologists and chemists to quantify the transport of matter through the benthic layer
(for a review see Imberger 1994, 1995). In lakes and estuaries, boundary mixing due to
breaking internal waves may provide a significant contribution to this transport,
especially since it now appears (Imberger 1995) that the large-scale seiching motion due
to Kelvin or Poincare! waves combines with groups of high-frequency nonlinear waves
to give rise to small-scale medium-frequency modes; the frequencies of this ω−# range
of the spectrum correspond to the local critical frequencies for typical lake slopes.

In the context of internal wave breaking on sloping beds two types of configurations
can be considered. Let us denote the dimensions of the benthic boundary layer by its
height δ normal to the bed and the alongshore length by L. All the laboratory
experiments (Cacchione & Wunsch 1974; Thorpe & Haines 1987; Ivey & Nokes 1989,
1990; Taylor 1993) carried out so far, except for the preliminary investigations by Ivey,
De Silva & Imberger (1995) and De Silva, Imberger & Ivey (1995), were confined to
breaking of a train of internal waves uniformly distributed over the sloping bed, so that
δ}L' 1; long, basin-scale shoaling internal waves also fall into this category. Most of
the vertical transport of mass and momentum in this situation is maintained by
complex shear dispersion flow (Imberger & Ivey 1993; Imberger 1994). The second
category is where the internal waves are only incident on part of the bed. Mixing
patches generated by these type of waves are localized with δ}LCO(1), and the
communication of the benthic fluid with the lake interior is mainly due to localized
horizontal intrusions. If the waves are forced for a time long compared to the wave
period, ambient fluid from the top and bottom of the mixed patch is entrained to
replenish the intruding benthic fluid, and an effective recycling of the benthic water is
established. However, the internal waves generated in the stable thermocline in a lake
beneath the surface mixing layer are made up of wave groups with a wide range of
frequencies and wavelengths and of varying intensity, a description further complicated
by intermittency in time and space. Such downward-propagating waves can also be
created by the collapse of isolated mixed regions generated by local turbulent events
(Wu 1969; McEwan 1973; Maxworthy & Monismith 1988; Teoh, Ivey & Imberger
1997). Accurate numerical modelling of the dynamics of lakes (Ogihara 1997) requires
a detailed knowledge of the internal wave field in space and time. The mixing generated
by such wave trains is better studied by taking into account the spatial and temporal
variability of the waves and we have thus concentrated in this laboratory study on the
case of localized rays of internal waves breaking on a sloping bed.

Reflection of internal gravity waves also plays an important role in the mid-ocean
dynamics owing to the presence of ocean boundaries and abyssal hills which cover a
sizeable area (Bell 1975) of the ocean floor. Low vertical diffusivities observed in the
open ocean interior also suggest that most of the mixing should take place near such
ocean boundaries (Garrett et al. 1993) in order to balance the overall vertical mass
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F 1. Schematic of the internal wave reflection from a sloping bed.

transport (Munk 1966). The suggestion of turbulence generated by mesoscale current
drag aginst the sea floor (Armi 1978) was later shown to be implausible (Garrett 1979).
With regard to lakes, Imberger (1994) showed that most of the energy supplied by the
wind to the internal waves (basin-scale and small-scale) is not lost in the lake interior,
but rather at the boundaries. Thus internal wave breaking at the boundaries seems to
be the most viable candidate to account for the low but finite vertical diffusivities
observed in the lakes (Imberger 1995; Etemad-Shahidi & Imberger 1997), and possibly
in the ocean interior (Munk 1996).

Two-dimensional linear internal wave reflection on a sloping bed has been treated
analytically by Phillips (1977). Eriksen (1985) extended the treatment to obliquely
incident waves on a uniform slope and Thorpe (1987) considered the case of finite-
amplitude waves. The boundary condition of zero normal velocity at the slope causes
the reflected wave to retain the same frequency as the incident wave. However, an
adjustment in the wavenumber and the amplitude of the reflected wave results. For the
critical case, where the direction of the group velocity of the reflected wave coincides
with the slope, the linear theory fails and the amplitude of the reflected wave increases
without bounds. In the absence of rotation, the critical incident internal wave
frequency is given by ω

c
¯N sinβ where β is the bottom slope from the horizontal and

N is the background stable buoyancy frequency defined by N #¯ (®g}ρ
r
) dρ}dz where

g is the acceleration due to gravity, ρ is the fluid density, ρ
r
is a reference density and

z is the vertical coordinate.
It is convenient to define a parameter γ¯ω}ω

c
, so that γ¯ 1 indicates critically

incident waves. Forward (supercritical) and backward (subcritical) reflecting waves
are represented by γ" 1 and γ! 1, respectively. Figure 1 shows a schematic of linear
reflection for the case γ" 1 where the wave interaction region is defined by the
triangular region formed by the incident and reflected wave rays. Given the situation
where both the incident and the reflected waves are stable individually, then
instabilities should only occur in the interaction region. Thus it seems logical that,
except for the case γ¯ 1 where the reflected wave is non-existent, the problem of wave
reflection from the bed may be thought of as wave–wave interaction of incident and
reflected wave rays, where the incident and reflected waves have the same frequency
and phase but have different wavelengths and amplitudes.

Laboratory experiments reported by Teoh et al. (1997) and numerical studies by
Javam, Imberger & Armfield (1997a) examined wave–wave interactions for waves of
the same frequency and wavelength and showed that the resulting instabilities were
generated by time-evolving nonlinear non-resonant interactions. Teoh et al. (1997)
observed for their experimental configuration (with forcing frequency ω"N}2) the
existence of 2ω and higher harmonics which were clearly evanescent modes, and the
same result was also observed in the numerical experiments of Javam, Imberger &
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Armfield (1997b) for all cases of γ1 1. Recent numerical work of Javam et al. (1997b),
showed that for waves near γE 1 the instabilities were triggered at the bed, while for
γ" 1 such regions were triggered off the bed, an observation consistent with the
present work. Their work also indicated that the reflection process for γ" 1 resembled
the wave–wave interaction of incident and reflected waves above the bed (cf. Thorpe
1987) in that waves with superharmonic frequencies formed. For super-critical finite-
amplitude waves, Thorpe (1987) showed that resonance between the incident and
reflected waves can occur at higher order for chosen pairs of α and β, where α is the
inclination of the incident wave group velocity to the horizontal. At second order this
can occur for small bed angles, specifically β! 9°.

The thickness δ of the boundary layer is determined by the properties of the incident
wave field for given ambient conditions. According to Ivey & Nokes (1989), for the
bottom boundary layer to form the Reynolds number defined by, ωζ #}ν, where ζ is the
wave amplitude and ν the kinematic viscosity, has to be greater than 15–20. The
resulting boundary layer thickness was found to be δE 5ζ. From re-examination of
their data and that of Taylor (1993), Ivey et al. (1995) suggested that in fact δE 0±15λ

v
,

where λ
v
is the wavelength of the incident waves measured normal to the bed, a result

which also appears to be consistent with available field data but smaller than the
observations from the numerical work of Slinn & Riley (1996) who found δE 0±25λ

v
.

According to previous laboratory experiments δ varies spatially over the alongshore
length and temporally over a wave cycle, but near γE 1 this variability was lower. For
critically incident internal waves on a 20° bed, Taylor (1993) argued that the boundary
layer flow consisted of two phases : a relatively calm downslope flow and a more
energetic upslope flow and this was the main source of the temporal variability.

In regard to the energetics of the wave breaking, a fraction of the energy of the
incident wave is radiated away as the reflected ray and a part of the energy is lost due
to turbulent dissipation. The rest is converted into irreversible mixing which accounts
for the vertical transport of mass and matter. Experiments by Ivey & Nokes (1990) for
critically incident waves on 30° bed showed the mixing efficiency, defined as the ratio
of the increase in potential energy to the loss of kinetic energy by the incident waves,
had an upper bound of approximately 0±20; the mixing efficiency reaching a maximum
at γE 1±2. For highly subcritical (γ! 1) waves nearly zero mixing efficiency and hence
buoyancy flux were observed. Recent numerical work by Slinn & Riley (1996)
suggested a slightly higher mixing efficiency of about 0±35 for critically reflected
internal gravity waves independent of the slope angle. According to their analysis, 35%
of the incident energy was utilized in mixing the stratified fluid, 55% was dissipated
into heat and approximately 10% of the energy was re-radiated away from the
turbulent boundary layer.

The present work was motivated by the fact that collapsing turbulent patches often
generate internal wave ray tubes that are incident only on part of the lake boundary.
Numerical schemes which use internal wave ray tracing techniques also require
knowledge of reflection process at boundaries for each ray tube. The configuration of
the present experiments was chosen to investigate such situations.

2. Experiments

The experiments were conducted in a glass-walled tank of dimensions
590 cm¬54 cm¬60 cm. The internal wave rays were generated using a multi-bladed
folding paddle, adapted from the pioneering work of McEwan (1973), made up of eight
5 cm¬53±5 cm hinged blades each covering the entire width of the tank (see figure 2
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F 2. Schematic of the wave paddle.

and Teoh et al. 1997). The wave ray tube generated by the paddle was approximately
1±5 wavelengths wide while the horizontal wavelength of the wave was 20 cm. The
amplitude of the outermost portions of the paddle was half that of the middle portion,
so that no net volume displacement of the fluid occurred, thus eliminating unwanted
fluid circulation within the tank. The work of McEwan (1973) indicated that the waves
generated by such paddles have a dominant first mode. However, a series of different
experiments were conducted with the same amplitudes on all portions of the paddle to
promote mixing. The former set of experiments is identified, where appropriate, with
the symbol * next to the paddle amplitude a in the discussion below. In each
experiment the paddle was submerged at least 2 cm below the surface to reduce the
generation of surface waves. Approximately 2 cm thick sponge strips were placed on
the two outermost edges of the paddle to prevent any disturbance to the ambient fluid,
which was otherwise quiescent. The side clearance between the end of the paddle and
the tank walls was about 0±3 cm. The paddle was mechanically linked to an eccentric
wheel and driven by a heavy-duty adjustable-speed stepper motor. By varying the
eccentricity of the wheel, the paddle amplitude could be varied. In this study, 2±0, 2±45,
2±9 and 3±1 cm paddle amplitudes were used. The lengths of the slender-linkage rods
connecting the paddle blades and the eccentric wheel were large compared to the
eccentricity (typically in the range of 50:1), so that the motion of the paddle was very
nearly sinusoidal.

A 2 cm thick Plexiglas plate, which served as the sloping bed, was installed in one
end of the tank. The plate was pivoted at 12 cm from the tank bottom, so that the bed
angle could be varied while keeping the pivotal axis fixed. The range of the bed angles
covered in the experiment was 5° to 45°. The pivotal axis, around which all the
measurement and flow visualization were done, also corresponded to the centre of the
incident wave ray.

The tank was filled with a linearly stratified salt solution using the standard two
bucket technique. The depth of the water column was 48 cm. Before starting each
experiment the tank was left for about 24 h in a temperature-controlled room to
achieve an equilibrium stable temperature. The temperature of the fluid medium was
measured using a FP07 fast response thermistor, while the salinity was simultaneously
measured using both a siphoning and a four-electrode microscale fast-response
conductivity probe. Since the drift in the suction conductivity probe was less than
0±2% over 10 h, the four-electrode fast-response conductivity probe was calibrated in
situ against the siphoning conductivity probe. The spacing between the tips of the three
probes was about 0±4 cm. The probe assembly was mounted on a computer-controlled
stepper-motor-driven linear bearing whose traversing speed was accurately monitored
by a slew signal. The direct and differentiated output from each sensor was recorded
at 100 Hz through a 16-bit analog-digital converter. A traversing speed of 10 cm s−"

was used; thus the Nyquist wavenumber cut off was 500 cycles m−". Prior to the
experiments, the thermistor was calibrated using an accurate platinum resistor
thermometer and the conductivity probes were calibrated using saline samples whose
densities were accurately measured using an Anton–Parr digital densitometer. In all
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cases third-order polynomials were used as the calibration curves. Three different flow
visualization methods were employed. A rainbow colour schlieren system, as described
in Ivey & Nokes (1989), was used to obtain flow images and also to ensure that the
sampling probes pass through the intended flow regime. This was sometimes
complemented by shadowgraph images. The overall flow pattern and the formation of
intrusions were visualized using dye samples as passive tracers.

The velocity field of the interaction region was quantified using a digital particle
tracking method (Maximum Cross-Correlation) as described in Stevens & Coates
(1994). The MCC technique essentially consisted of maximizing the cross-correlation
between two video frames of particle images separated by a known time interval. The
particles, containing pigments of rhodamine and sodium fluorescein dye, were injected
slowly into the flow field before the beginning of the experiment. An argon-ion (4 W)
vertical laser sheet of approximately 5 mm thickness was used to illuminate the
particles across the mid-section of the tank. The resulting flow patterns were recorded
on super-VHS format for subsequent analysis. The video images were digitized using
an ITEX frame grabber with 10-bit range in intensity. The images contained intensity
information of (768¬568) pixels, so that depending on the physical area imaged the
spatial resolution could be estimated.

3. Results

3.1. Schlieren �isualization

The details of the Rainbow colour schlieren system are adequately described by Howes
(1984, 1985), Ivey & Nokes (1989) and Taylor (1993). Figure 3(a, b) shows schlieren
images of the interaction region of the incident wave and the reflected wave at slightly
supercritical and highly supercritical conditions, respectively. The vertical lines in the
images are 10 cm apart. The point of intersection of the vertical centreline of the two
vertical bars with the slope corresponds to the centre of the incoming wave ray tube.
These images are different from those of Ivey & Nokes (1989) due to the fact that in
the present experiment the incident ray tube was local, whereas in Ivey & Nokes (1989),
the wave forcing was present over the entire slope. The rainbow filter of diameter
2±54 cm used in the schlieren system consisted of annular colour rings of blue at the
centre, yellow, green, red and black at the outermost ring. The colours depicted in the
images are an indication of the amount of the light deflected by the fluid medium which
in turn was proportional to the gradient of the refractive index. For aqueous solutions
of low concentrations of NaCl, the refractive index (µ) is linearly related to its density
by dµ}dρ¯ 0±2431 gm−" cm$. Thus, the colours can also be used to estimate the
instantaneous density gradient of the fluid. The deflection (η) at the exit plane of a
normally incident beam of light is given by (Howes 1984),

η¯
1

2

dµ

dρ

dρ

dz
W #, (1)

where W is the width of the tank. In the present experimental set up the maximum η,
which corresponds to colour black, observable is 1±27 cm, W¯ 54 cm, and the focal
length of the converging mirrors is 244 cm, hence the black regions in figure 3 indicated
a density gradient of dρ}dzE 7±9¬10−% gm cm−%. For a density stratification of N¯
0±921 rad s−" (dρ}dzE 8±6¬10−% gm cm−%), this implied that the black regions, which
were the regions of weakest density gradients, could be statically unstable.

About two wave periods after the initiation of the paddle forcing colour bands
depicting the different density gradients were visible above the bed. The angle of



A breaking internal wa�e ray at a sloping bottom 7

(b)
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F 3. Schlieren video images showing the on-slope and off-slope initiation of instabilities
depending on γ. The experimental conditions are a*¯ 2 cm, N¯ 0±921 rad s−", β¯ 20°. (a) α¯ 45°,
γ¯ 2±07; (b) α¯ 56°, γ¯ 2±43. The vertical lines in each figure are 10 cm apart. The oblique thin
white line indicates the centreline of the incident wave ray.

inclination of the bands to the vertical was in agreement with the linear ray theory. As
the waves approached the bed, the density gradients were alternately weakened and
sharpened in the region above the bed. This was clearly visible on the images as black
coloured banded regions near the bed, while away from the slope the colour remained
near green or yellow indicating moderate changes in the density gradient. In all
experiments, instabilities first occurred in the black regions and once the instabilities
were initiated, the interaction region soon became turbulent as indicated by the
‘mingling’ of colours.
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F 4. The variation of time (in wave periods) at which the instabilities were first observed in the
schlieren images. Time t¯ 0 is taken as the time taken by the waves to arrive at the bed from the
paddle. The experimental conditions are: a*¯ 2±0 cm, N¯ 0±921 rad s−". The vertical line centred in
one of the symbols indicates the errorbar.

For incident waves closer to the critical condition, or moderately supercritical, the
instability region was initially triggered near the bed (figure 3a). An interesting
observation made in the series of experiment was that as the incident wave became
progressively more supercritical, the initial instabilities began to form away from the
bed (figure 3b). However, after a few more wave cycles the size of this region of
instabilities gradually developed and extended down to the bed. According to Thorpe
(1987), nonlinear effects reduce the steepness of the incoming waves and promote low
statically stable regions away from the slope, for supercritical waves. Consistent with
previous experiments, the turbulent boundary layer did not form until a few wave
cycles after the commencement of paddle forcing. Figure 4 depicts the time (in wave
periods) at which instabilities were first observed in the schlieren images after the
arrival of the first train of waves at the bed.

3.2. Vertical density profiles

Vertical casts or density profiles were used to quantify the turbulence generated by the
breaking events. The process involved two stages. First, the recorded profiles with
overturns were monotonized to obtain the statically stable state which was associated
with the minimum potential energy. The vertical distances l

d
each fluid parcel had to

be displaced to achieve the monotonized profile are known as the Thorpe displacements
(Thorpe 1977). Using the values of l

d
, an appropriate lengthscale l

c
of the energy-

containing eddies was calculated as outlined in Imberger & Boashash (1986). The
centralized lengthscale l

c
is calculated by moving the displacement scales l

d
by one-half

of the l
d

values themselves to the centre of the event. For an ideal overturning event
having complete solid-body rotation of the fluid, this procedure removes the events
having maximum displacements at the boundaries of the patch (see Imberger &
Boashash 1986). This centralized lengthscale l

c
was used in estimating the appropriate

non-dimensional numbers which will be discussed later in §3.6.
In figures 5 and 6, we present a series of vertical casts of density profiles taken

through the vertical centreline of the interaction region, the displacement scales and the
resulting buoyancy anomalies for two different experiments with α¯ 45°, γ¯ 2±06 and
α¯ 26±7°, γ¯ 1±31, respectively. In both figures the time interval between two
consecutive profiles was 1}7 of the corresponding wave period. The magnitudes of l

d

and g« show a definite variation through the wave cycle. Note that the buoyancy
anomalies observed in figure 5(c) (compare profiles 2 and 3), are not proportional to
the displacement scales shown in figure 5(b), even though the initial density
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F 5. (a) The Density profiles taken through the vertical centreline of the interaction region for
seventh wave cycle. The time interval between the profiles is T}7, where T is the incident wave period.
Except for the leftmost profile, each other profile is offset by 0±01 gm cm−$. (b) The displacement scale
l
d
, for the profiles shown in (a). Except for the leftmost profile, each other profile is offset by 2 cm.

(c) The buoyancy anomaly g«, for the profiles shown in (a). Except for the leftmost profile, each other
profile is offset by 0±2 cm s−#. The experimental conditions are a¯ 2±9 cm, N¯ 0±641 rad s−", α¯ 45°,
β¯ 20°.

stratification was linear. This was caused by the changes in the initial linear
stratification by the straining of the density field due to the waves and mixing. This
disparity may be explained as follows: consider a discretely sampled density profile ρ(i),
i¯ 1 to m, at intervals of ∆z in the vertical : The buoyancy anomaly at the ith point is
defined by g«(i)¯ g[ρ(i)®ρ

!
(i)]}ρ

r
where ρ(i) and ρ

!
(i) are the instantaneous and the

monotonized density distributions. Let ρ
!
( j) be the density in the monotonized profile

corresponding to density ρ(i) (so that the jth point in the ρ
!

profile and the ith point
in the ρ profile have the same density), then

g«(i)¯
g

ρ
r

[ρ
!
( j)®ρ

!
(i)]¯∆z3

j

i

M #(k), i1 j, (2)

where M #(k) is the vertical density gradient of the monotonized density profile ρ
!
(z).

Note that if the instantaneous profile ρ(z) does not contain any overturns then such
pairs of i and j do not exist, and consequently (2) is not valid.

This procedure excludes pure wave-like motions which do not contain any
overturns. Note that the displacement scale l

d
¯∆z( j®i). For constant ∆z, the

buoyancy anomaly is strictly dependent on the local monotonized buoyancy frequency
between the points i and j, according to (2). The sorted profile ρ

!
(i) can be different
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F 6. Same as figure 5, but for α¯ 26±7°.

from the initial density distribution only through turbulent and molecular diffusion
and by the straining of the isopycnals by the wave motion. Thus the buoyancy anomaly
observed in a turbulent stratified environment is due to a combination of the actual
displacement of fluid parcels and the straining of the density field. In light of the
present experiments, we may estimate the contribution due to the straining of the
density field. The contribution to M #(k) from a linear internal wave field is purely
sinusoidal and its amplitude can be shown to be (Phillips 1977), N#

!
an, where N

!
is the

initial buoyancy frequency, a is the wave amplitude and n is the vertical wavelength.
The parameter an is usually termed the wave steepness. Thus the buoyancy anomaly
is changed by a factor of an due to the presence of the wave field. The relatively large
buoyancy anomalies observed at different phases of the wave were indicative of the
nonlinearity of the resulting density distribution.

3.3. Spatial extent of the boundary layer

The height normal to the bed of the wave interaction region (the triangular region
formed by the incident wave, the reflected wave and the bed shown schematically in
figure 1) is given by the geometry as

h¯λ
sin rα®βr
2 cosα

(3)

for both subcritical (α!β ;γ! 1) and supercritical (α"β ;γ" 1) cases. Here λ is the
horizontal wavelength, α is the inclination of the group velocity vector of the incident
wave to the horizontal, and β is the inclination of the bed to the horizontal. The
magnitude of h depends on the absolute value of α®β. Thus, for a given incident
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F 7. The variation of non-dimensional cycle-averaged boundary layer thickness with the
parameter γ : D, a¯ 3±1 cm, N¯ 0±615 rad s−", ω¯ 0±485 rad s−" ; , a¯ 3±1 cm; N¯ 0±615 rad s−",
ω¯ 0±298 rad s−" ; ¬, a¯ 2±9 cm; N¯ 0±641 rad s−", ω¯ 0±453 rad s−" ; n, a¯ 2±9 cm; N¯
0±641 rad s−", ω¯ 0±288 rad s−" ; D, a¯ 3±1 cm; N¯ 0±588 rad s−", ω¯ 0±365 rad s−".

wave field (constant α) changing the slope angle β above and below the critical angle
(β¯α) by the same amount results in the same h.

The thickness δ of the benthic boundary layer may be defined as the distance above
the bed beyond which the displacement scale l

d
vanishes. From figures 5 and 6, a strong

temporal variation in the thickness of the boundary layer is evident in both cases.
However, comparison of the two figures should be done with caution: while both
experiments were conducted with the same bed slope of 20°, for the run shown in figure
5 with higher γ (hence higher ω), there was more incident wave energy being imparted
into the boundary layer per unit time than for the run shown in figure 6. As a result
the boundary layer region appears to be more turbulent in figure 5.

In quantifying the boundary layer thickness, for each run several vertical profiles
through the centreline of the interaction region were taken. The thickness δ was
calculated as the statistical mean of the distances from the bed to the point at which
l
d

became zero; see figures 5 and 6, for example. Although this method yielded a
temporally averaged value it excluded the spatial variability. A simple energy argument
was then used to obtain a vertical scale for the turbulence caused by wave breaking.
For a given wave amplitude a the maximum amount of energy available per unit mass
is of order a#N # and for a background stratification N one complete overturn will have
a scale a. In this simplified treatment, all the incident wave energy was assumed to be
expended in realizing one overturn and the production of a buoyancy flux, while local
energy dissipation and energy carried away by the reflected waves are neglected, effects
which will be considered later, in §3.7. In figure 7, the variation of non-dimensional
boundary layer thickness δ}a with γ is shown. The boundary layer thickness δ was
taken as the average of the distances from the point at which l

d
¯ 0 to the bed over

different phases in one wave cycle. The errorbar shown indicates the maximum and
minimum values observed for that particular data point.

In reality, the amount of energy available to create an overturn is less than a#N #,
hence δ}a should be less than unity. However, as the size of the interaction region
increases with increasing γ, the overturn regions are rather patchy and segmented and
there is more than one overturn (for example, see the displacement scales l

d
in figures

5 and 6 which show there are stable regions sandwiched between the unstable regions).
Since δ is defined as the total extent over which these unstable signatures were
observed, δ}a can be greater than unity, as seen in figure 7 for the supercritical runs.
The figure also shows a definite decrease in thickness of the boundary layer as the
incident waves become close to critical. Although the parameter range is limited for
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F 8. A sequence of velocity field images of the seventh wave cycle for a critically incident wave
field at the interaction region. The experimental conditions are: a¯ 3±1 cm, N¯ 0±588 rad s−", ω¯
0±365 rad s−", γ¯ 1±00. The time interval between the images is approximately T}4: (a) t¯ 120 s, (b)
124 s, (c) 128 s, (d ) 132 s. The imaged area shown in each panel is 23±4 cm¬18±5 cm. The solid
triangle in each panel at the slope indicates the centre of the interaction region.

subcritical cases, a steady increasing trend in the non-dimensional boundary layer
thickness is evident. The increase in lengthscales can also be seen later in figure 13. This
result is different from the relation δE 0±12λ

v
reported by Ivey et al. (1995). The

disparity may be due to the following: (i) the relation given by Ivey et al. (1995), as was
also suggested by Slinn & Riley (1996), was valid strictly only for critically incident
waves ; (ii) the boundary layer thickness for supercritical runs shown in Ivey et al.
(1995) (their figure 5) was based on schlieren observations (although they found a few
supporting data points from density microstructure profiles of Taylor (1993) for
critically incident waves), whereas the present data were all extracted from the vertical
profiles of density ; (iii) the data of Ivey et al. (1995) were both spatially and temporally
averaged as opposed to the present data which were only temporally averaged.

3.4. Velocity field in the interaction region

Figure 8 shows a series of velocity images of the interaction region, corresponding to
the seventh cycle, for a critically incident wave field with a¯ 3±1 cm, α¯β¯ 38±4° and
γ¯ 1. The time interval between two consecutive images was approximately 0±25T,
where T is the wave period. The solid triangle on each of the images indicates the
position where the centreline of the incident ray beam intersected the bed, where the
incident wave ray spanned diagonally across each figure. The wave field described here
essentially contained only the incident wave ray as the effect of the reflected wave was
minimal.
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F 9. A sequence of velocity field images near the interaction region for a supercritically incident
wave field. The ninth wave cycle is shown. Experimental conditions are: a*¯ 2±0 cm, N¯
0±588 rad s−", β¯ 23±3°, ω¯ 0±365 rad s−", γ¯ 1±57. The wave period is 17±2 s. The imaged area
shown in each panel is 30±4 cm¬23±7 cm. (a) t¯ 156 s, (b) 160 s, (c) 164 s, (d ) 168 s.

Far from the sloping bed, in all panels, the velocity structure of the oblique incoming
wave can be seen. Near the bed, this wave field was distorted by a persistent and
dominant alongslope flow resembling a turbulent bore. Near vertical motion above the
middle of the bed (figure 8a, b) and an eddy-like structure at mid-slope were due to the
interaction of the incident wave and the alongslope flow which caused the fluid motion
to separate from the bed. In the next quarter of the cycle (figure 8c), the incident wave
field reversed direction, as did the swirling eddies and the alongslope flow. The
stagnation points in the flow field in all panels are marked S. Subsequently, strong
downslope and upslope flows caused an ejection of fluid away from the bed and a jet-
like structure is shown in the last quarter of the cycle (figure 8d, marked J). From the
schlieren images, the motion inside the jet seemed to be turbulent throughout the cycle.
This sequence of events was repeated in each wave cycle and the net result was an
almost horizontal periodic intrusion into the main fluid body. The motion above the
bed showed a strong spatial inhomogenity and except for the moving turbulent bore,
the rest of the motion seemed to be relatively calm. Apart from the collision of upslope
and downslope flows which caused the fluid injection, most of the motion, other than
the incident wave motion, was confined to a narrow region above the bed. With the no-
slip boundary condition at the bed this implied that most of the incident energy had
to be dissipated in this narrow region near the bed and as we will see in §3.6 below, the
magnitudes of the cycle-averaged overturn lengthscales were small.

In figure 9 we show the velocity images for an incident wave field as in figure 8, but
at a different slope angle of β¯ 23±3° (γ¯ 1±57) and with a lower paddle amplitude
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F 10. (a) Time series records of density at two points (z¯ 1±5 cm and 6±0 cm) in the vertical
centreline of the interaction region. N¯ 0±615 rad s−", ω¯ 0±432 rad s−", a¯ 3±1 cm, γ¯ 1±32. Time
t¯ 0 is taken as the initiation of paddle forcing. (b) The spectrum of the density fluctuations recorded
1 cm above the bed in the centre of the interaction region. a*¯ 2±0 cm, N¯ 0±922 rad s−", α¯ 33±2°,
β¯ 20°, γ¯ 1±60. The dotted lines indicate the 95% confidence limits.

a¯ 2±0 cm in order to illustrate how the velocity field was influenced by the presence of
a reflected wave ray. Note the reduction in the magnitudes of the velocity due to the
decrease in paddle amplitude. The particular images shown correspond to the 9th wave
period since the beginning of the paddle motion. In all figures towards the mid-left and
mid-right of the panel the incident wave and reflected wave rays can be seen, although
they are somewhat distorted by the motion remaining from the previous cycle. One
major difference here from that observed in the critical run is that the flow parallel to
the bed took place slightly above the bed. The magnitude of the velocity vectors very
near to the bed have decreased compared to that of the critical case (figure 8). The eddy
motion also extended further off the bed than in the critical case, a result of the increase
in the extent of the wave interaction region, as given by (3). This area where increased
eddy motions were present were also clearly seen in the schlieren observation. The
velocity field appeared more complex, showing more recirculating eddies with some
irregular flow patterns, and the regular internal wave motion was difficult to resolve.
The increase in the extent of the wave interaction region allowed a larger region for
overturning to take place, compared to the critical case presented in figure 8. As a
result, the magnitude of the overturning lengthscales increased (see §3.6).

3.5. Time series of density records

Figure 10(a) shows the time series of the density records for a run with γ¯ 1±32 at two
different elevations: z¯ 1±5 cm and z¯ 6±0 cm along the vertical centreline of the
interaction region. Note that for the given experimental parameters z¯ 1±5 cm lies
within the interaction region whereas z¯ 6 cm lies outside it. At both locations a
continuous increase in magnitude of the density variations with time can be seen up to
approximately six wave periods at which point the wave amplitudes continued to grow
until such time that they were large enough to cause instabilities and prevent further
growth. Of the two isopycnal displacement records, note that the one closer to the bed
(z¯ 1±5 cm) underwent the breaking earlier. This is consistent with the observation
shown in figure 3 that for moderately supercritical waves the instabilities first
developed near the bed. The power spectral density of the density fluctuations shown
in figure 10(b) exhibited a weak peak at the frequency 2ω. For this particular run
2ω"N, so this is an evanescent wave mode which should decay rapidly with the
vertical distance from the disturbance source. Numerical simulation on wave–wave
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F 11. Time series records at the locations X1,…,X4, showing the existence of an upslope flow
parallel to the bed. The locations are defined by (x«, z«) coordinates in cm (8±9, 0±8), (11±8, 0±8), (17±8,
0±8) and (23±7, 0±8), respectively. The experimental conditions are as given in the caption of figure
10(a).

interactions and reflection of internal waves at boundaries by Javam et al. (1997a, b)
and the laboratory experiments of Teoh et al. (1997) on wave–wave interactions also
showed similar features.

To investigate the alongslope flow which dominated near the critical conditions,
time series of density records were obtained in one experiment at four upslope locations
(figure 11). When the upward-moving bore carrying higher-density deeper fluid
reached the conductivity probe, a sudden rise in the density was observed (station X2,
between periods 4 and 5). The bore, which resembled the head of an upward-moving
gravity current, had a rotational motion and that enhanced the density gradient
between the bore and the ambient fluid. At later stages, when it reached stations
X3 and X4, the spinning motion of the head had diminished and the density jump
had weakened. Near the centre of the interaction region, the density fluctuations
had a regular oscillating behaviour as is clearly seen for the data at X1, whereas far
from the centre at stations X3 and X4, for example, this feature was not as clear. This
was probably due to the motion remaining from the previous cycles and also due to the
increased relative influence of the background wave motion. It should be mentioned
that all locations from X1 to X4 were upslope from the centre of the interaction region
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F 12. (a) The variation of maximum displacement scales over a wave cycle. (b) The variation
of available potential energy of the fluctuations (APEF) over a wave cycle ; ¬, for the run given in
figure 5; D, for the run given in figure 6.

and no density records at downslope locations were recorded. However, flow
visualization using the shadowgraph technique revealed the existence of a comple-
mentary downslope flow.

3.6. Turbulent quantities

Based on the turbulent lengthscale l
c
(see §3.2) non-dimensional numbers associated

with stratified turbulence may be defined as (Ivey & Imberger 1991; Imberger 1994) :
the turbulent Reynolds number Re

t
¯ ul

c
}ν ; the turbulent Froude number Fr

t
¯

u}Nl
c
; and the small-scale turbulent Froude number Frγ ¯ (ε}νN #)"/#, where ε is the

rate of kinetic energy dissipation, u¯ (εl
c
)"/$ is the r.m.s. velocity fluctuations if l

c
is

representative of the scale of energy-containing eddies, and ν is the kinematic viscosity.
The instantaneous kinetic energy dissipation rate ε was obtained by curve fitting a
theoretical Batchelor spectrum for the temperature gradient (Batchelor 1959) to the
measured temperature gradient spectra (Dillon & Caldwell 1980; Imberger & Boashash
1986; Luketina 1987; Teoh et al. 1997; Grigg & Ivey 1997) taking ε as a free parameter.
Based on the resolution of the sensors used in the study, dissipation rates in the range
of 10−"!–10−& m# s−$ could be successfully resolved (Luketina & Imberger 1989; Teoh
et al. 1997; Grigg & Ivey 1997). A typical record length was 12±8 cm where the portion
of the wavenumber spectra from the maximum to the roll-off region was used for curve
fitting.

Re
t
can be interpreted in terms of energy as either the ratio of the rate of actual

energy being dissipated to the rate of dissipation by viscous action on motions of scale
l
c
or in terms of timescales as the ratio of the time it takes for momentum to be diffused

by viscous action to the time it takes for the turbulence to advect the fluid element by
l
c
(Imberger 1994). In the same way, Fr

t
can be interpreted as either the ratio of the

rate of dissipation to the rate of release of potential energy or as the ratio of the
time it takes for an unstable fluid parcel to return to its neutral position to the time
it takes to mix the buoyancy anomaly. The small-scale Froude number Frγ is often
used as a parameter which indicates the existence of a buoyancy flux. The grid-
generated turbulence experiments of Stillinger, Helland & Van Atta (1983) and
Itsweire, Helland & Van Atta (1986), for example, indicated that when Frγ " 4 a
buoyancy flux exists.
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F 13. The variation of (a) cycle-averaged r.m.s. central displacement scale and (b) cycle-
averaged maximum central displacement scale, with γ : ¬, a¯ 3±1 cm; N¯ 0±615 rad s−", ω¯
0±485 rad s−" ; D, a¯ 3±1 cm, N¯ 0±615 rad s−", ω¯ 0±298 rad s−".

The temporal variation of the maximum displacement scale l
d(max)

and the available
potential energy of the fluctuations (APEF), defined by

APEF¯
g

ρ
r

&(ρ(z)®ρ
!
(z)) dz, (4)

over a wave period for the profiles shown in figures 5 and 6 are shown in figure 12.
APEF signifies the increase in the potential energy from the monotonized density
profile ρ

!
(z), which has the minimum potential energy, to that of the measured profile

ρ(z) with overturns present. Both quantities showed a strong variation in time within
a wave period where consecutive data points in figure 12 are separated in time by 1}7th
of the wave period. For each profile, l

c(rms)
is defined by taking the square root of the

averaged sum of squares of all l
c

over the boundary layer thickness, and l
c(max)

is
defined as the maximum value of l

c
.

Despite the temporal variability, cycle-averaged quantities (denoted by an overbar
here) can show the overall features in a given situation. Figure 13 shows the variation
of cycle-averaged l

c(rms)
and cycle-averaged l

c(max)
for two series of runs each having

the same incident wave amplitude but with varying bed slopes. The incident wave field
corresponding to the data points is shown with open circles and have a lower frequency
than those marked with ¬. However, the decrease in averaged lengthscales with
increasing γ in figure 13(a) is due to the fact that the data were averaged over a smaller
boundary layer thickness. It is also interesting to observe that, as the waves become
subcritical, the magnitudes of the lengthscales remain comparable to their supercritical
counterparts and a maximum near γE 2 is evident. Owing to experimental limitations,
the range of subcritical frequencies covered was limited, although an increase in
lengthscales as γ decreased from one can be seen. As can be seen from the linear
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F 14. The variation of (a) cycle-averaged kinetic energy disssipation level, (b) cycle-averaged
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scale turbulent Froude number, with γ : ¬, a¯ 3±1 cm; N¯ 0±615 rad s−", ω¯ 0±485 rad s−" ;
D, a¯ 3±1 cm; N¯ 0±615 rad s−", ω¯ 0±298 rad s−".

geometric ray considerations, as γU 1 the interaction region between the incident and
reflected waves vanishes, and most of the dissipation appears to occur in the above-
mentioned narrow flow regime (see the velocity image shown in figure 8, for example).
Practical difficulties associated in traversing the probe very close to the slope may also
have contributed to the decrease of the lengthscales near γ¯ 1.

Figure 14 shows the cycle-averaged kinetic energy dissipation rate ε- , the turbulent
Reynolds number Re

t
, the turbulent Froude number Fr

t
, and the small-scale turbulent

Froude number Frγ for the same two series described above. The decrease in
dissipation levels in the subcritical regime (open circles) is due to the lower incident
frequency. Near critical conditions, Re

t
attains relatively low values due to the decrease

in lengthscales. The decrease in the lengthscales and the amount of mixing seems to be
in contradiction to the previous experimental studies (Ivey & Nokes 1989) and field
measurements (Eriksen 1982) and also to the linear theory. The Reynolds numbers
associated with the experiments of Ivey & Nokes (1989) were, however, large compared
to those of the present study. The present experiments clearly show that the near-
critical wave breaking process is dominated by a highly sheared parallel flow regime
just above the bed where most of the incident energy is dissipated. The decrease in
turbulent Reynolds numbers suggests that turbulence is suppressed by the viscous
forces. The single anomalous points, Re

t
in figure (14b) and high Fr

t
in figure (14c), are
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F 15. Dye visualization of the intrusion flow. The experimental conditions are: a*¯ 2±0 cm,
N¯ 0±821 rad s−", α¯ 45°, β¯ 20°, γ¯ 2±07. (a) t¯ 55T, (b) t¯ 125T. The influence of the wave
field on the intrusion is evident near the bed.

due to the low l
c(rms)

recorded in one experiment closer to critical conditions. It should
be noted, however, that low Frγ does not necessarily mean that there is no buoyancy
flux at some point in the cycle in the wave breaking process ; these values are cycle-
averaged and in a wave period there could be higher Frγ such that during a portion of
the wave period Frγ " 4 (there is strong variability in the turbulent properties within
a cycle ; see figure 12 of Taylor 1993).

3.7. Formation of intrusions

In the present study wave breaking occurs at a localized region on the slope, rather
different to previous experiments by Taylor (1993) and Ivey & Nokes (1989). Owing to
the horizontal pressure gradient between the locally mixed region and the ambient
stratification, the mixed fluid intrudes horizontally into the fluid interior along
isopycnals. Figure 15 shows dye visualization of the intrusion formation for a
supercritically incident wave at two different times. In this particular run, green and red
samples of dye, matched at the corresponding densities, were injected slowly at two
initial locations approximately 5 cm upslope and 5 cm downslope of the centre of the
incident wave ray before starting the paddle.

The upslope and downslope motion parallel to the bed, as described in §3.2, mixed
the red and green dye, but only weakly: the mixed fluid then moved horizontally into
the main water body. It is worthwhile to note that the colour difference in the dye was
maintained for a long time with little mixing between the two dye samples taking
place. Figure 16 shows the velocity images obtained over a wave cycle in the intrusion
region for the same experiment. At the top in the centre of all panels part of the incident
wave can be seen and indeed the dominant motion of the fluid in the figure is wave-
like. The horizontal level where the centre of the incident wave rays intersected the bed
is shown with a solid line on the left edge of each panel. In the middle of figure (16a, d )
velocity vectors showing fluid motion towards the main water body can be seen, while
during the next half of the cycle (figure 16b, c) the fluid motion in the intrusion region
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F 16. The velocity images of the interaction region. The experimental conditions are given in
the caption of figure 15. The imaged area shown in each panel is 15±2 cm¬12±2 cm. The horizontal
solid line on the left edge of each panel shows the level of the point where the centre of the incident
wave ray intersects the bed. The wave period is 10±8 s. (a) t¯ 60 s, (b) 64 s, (c) 66 s, (d ) 68 s.
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F 17. The variation of non-dimensional intrusion length with non-dimensional time. D,
a*¯ 2±0 cm, N¯ 0±821 rad s−", α¯ 45°, β¯ 20°, γ¯ 2±06; ¬, a¯ 3±1 cm, N¯ 0±60 rad s−", α¯ 52°,
β¯ 23±3°, γ¯ 1±99; , a¯ 3±1 cm, N¯ 0±60 rad s−", α¯ 52°, β¯ 32±5°, γ¯ 1±46; A, a¯ 3±1 cm,
N¯ 0±60 rad s−", α¯ 52°, β¯ 16±7°, γ¯ 2±74; n, a¯ 3±1 cm, N¯ 0±60 rad s−", α¯ 52°, β¯ 36°,
γ¯ 1±34.

is in the opposite direction. Thus the intrusion is pulsating, but the result is a net
movement driven by the buoyancy flux in the benthic boundary layer of the fluid into
the interior.

Depending on an appropriately defined intrusion Richardson number and Reynolds
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numbers, the intrusion may have an inertia–buoyancy balance (De Silva & Fernando
1997; Maxworthy & Monismith 1988; Manins 1976; Imberger, Thompson & Fandry
1976), a viscous–buoyancy balance (Maxworthy 1972) or a diffusion–buoyancy
balance (Zuluaga-Angel, Darden & Fischer 1972). The parameters in the present study
are such that the intrusion lies in the viscous–buoyancy regime (see below); thus, once
the intrusion has emerged from the vicinity of the interaction region, a simple
viscous–buoyancy balance can be used to obtain the position of the nose and the
intrusion velocity.

The volume flux driving the intrusion is due to the turbulent mixing in the interaction
region. The flux of incident internal wave energy at the interaction region per unit time
is of order a#N #ω. If the wave reflection coefficient is C

r
, then the energy available for

mixing is a#N #ω(1®C
r
). Assuming a constant mixing efficiency of R

f
(Ivey & Imberger

1991) for the turbulence, the resulting buoyancy flux is a#N #ω(1®C
r
)R

f
. Thus we may

write,

a#N #ω(1®C
r
)R

f
¯

g

ρ
!

ρ«w«. (5)

The volume flow rate Q per unit width available through turbulent entrainment over
an active length of l

a
(per unit width) is

Q¯
l
a

ρ
!

ρ«w«, (6)

where ρ« and w« are the density and vertical velocity fluctuations and ρ
!

may
conveniently be taken as the mixed density at the depth of the mid-point of the
interaction region. Using (5) and (6), and letting l

a
Eλ, the horizontal wavelength, we

get
Q¯ a#N #ω(1®C

r
)R

f
λ}g. (7)

In general, both R
f

and C
r

are dependent on the parameter γ. The laboratory
experiments of Ivey & Nokes (1990) indicated that R

f
is indeed a function of γ and has

a maximum near γE 1±2. The only available information of the functional dependence
of C

r
on γ is due to the numerical work of Javam et al. (1997b) who found the best fit

of the form
C

r
¯®0±122γ#0±855γ®0±613, (8)

a relation which is valid before the initiation of turbulence. The intrusion length–time
variation for a buoyancy–viscous intrusion in a linearly stratified is given by (Chen
1980),

xC (Q%N #}ν)"/' t&/'. (9)

Using (7)–(9), and noting that ω¯N sinα, the non-dimensional form of the time
evolution of intrusion length becomes

x}x
s
C (Nt)&/', (10)

where the normalizing scale x
s
is given by

x
s
¯ 9a#λ

g
R

f
(1®C

r
) sinα:#/$ (N *}ν)"/'. (11)

Figure 17 depicts the relationship (9) for different runs. Here we assume R
f
¯ 0±2 (e.g.

Ivey and Imberger 1991) since γ in the present experiments did not fall within the
parameter range of Ivey and Nokes (1990). The solid line indicates the best fit which
has a slope of 0±83, in good agreement with the prediction in (10).
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F 18. The time evolution of the mean density profile, taken 11 cm from the centre of the
interaction region to the interior. The experimental conditions are: a*¯ 2±0 cm, N¯ 0±922 rad s−",
α¯ 41±1°, β¯ 20°, γ¯ 1±92.

It was assumed above that the intrusion followed a viscous–buoyancy balance.
Using typical values of a¯ 3 cm, ω¯ 0±5 rad s−", λ¯ 20 cm and β¯ 20°, we find
QC 3¬10−$ cm# s−". The dynamics of an intrusion (Chen 1980) is determined by
the discharge Richardson number Ri

j
¯Nh

j
}u

j
, the discharge Reynolds number

Re
j
¯Q}ν, and the plume Reynold number Re

v
¯ (NQ)"/# h

j
}ν where h

j
is the height

of the discharging slot. Based on typical values and taking h
j
¯ 10 cm, we find that

Re
v
¯ 42, Re

j
¯ 0±3 and Ri

j
¯ 120, which indeed correspond to a viscous–buoyancy

balance intrusion (Chen 1980).
Despite the breaking events at the bed, the changes in the mean density gradient were

negligibly small. This is shown in figure 18, which shows the vertical density profiles
measured in the centre of the tank 11 cm towards the interior from the mid-point of
the interaction region. This experiment was run with the intention of looking at the
long-term evolution of the mean density gradient in the water column. The wave
forcing was sustained over more than 10% wave periods, but negligibly small changes
in the mean gradients were found. This is somewhat expected because, as pointed out
above, the volume flux rate into the fluid interior was small and for this particular run
we used the lowest wave amplitude of a¯ 2±0 cm and a somewhat higher stratification
than other runs.

We may estimate the rate of destruction of the mean density gradient due to
turbulent mixing as follows: the potential energy associated with a linearly stratified
fluid column of height H per unit cross-sectional area in the horizontal is ρ

m
N #H $}12,

where ρ
m

is the mean density. From above, the buoyancy flux available in the
interaction region due to the incident wave energy per unit per volume per unit time
is ρ

m
a#N #ω. Thus, equating the buoyancy flux to the rate of change of the potential

energy, and taking the height of the mixed region H as the thickness of the benthic
boundary layer δ, we may write

d

dt
(ρ

m
N #δ$)C ρ

m
a#N #ωδR

f
(1®C

r
). (12)

The averaged thickness of the boundary layer δ remains constant over a time scale long
compared to the wave period. Non-dimensionalizing the time by 1}ω (τCωt), the time
rate of change of stratification at large times, becomes

) 1

N #

d

dτ
(N #))C 0aδ1

#

R
f
(1®C

r
). (13)
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diagram: , D, present study; N, laboratory experiments

of Grigg & Ivey (1997) on mixing due to shear instabilities ; K, field measurements of Lemckert &
Imberger (1995).

In general a}δ! 1 for supercritical waves, as shown in figure 7. While R
f
and C

r
are

not known accurately, reasonable estimates would be R
f
! 0±2, and 1®C

r
! 1.

Therefore, we expect r (dN#}dτ)}N #r' 1. Hence the destruction of the mean density
gradient is rather slow. A basic assumption in deriving equation (13) is that the energy
input to the boundary mixing region remains constant. However, as the stratification
within this region (and also near the paddle) decreases, the energy input in the form of
internal waves diminishes ; hence (13) does not predict the behaviour at large times.

3.8. Comparison with field obser�ations

The internal wave field in lakes and oceans consists of a broad band of frequencies and
wavenumbers. Lack of detailed knowledge of the incident and reflected wave fields in
field observations makes it fundamentally difficult to compare such results with the
present experimental study. The dependence of a stratifying agent, heat in freshwater
lakes, and heat and salt in the oceans, on the turbulent quantities and the vertical fluxes
is also not known.

Figure 19 shows the experimental data in Fr
t
,Re

t
space (see Ivey & Imberger 1991).

Also included in the figure are some field measurements of boundary mixing.
Measurements by Lemckert & Imberger (1995) in Lake Kinneret clearly show a
buoyancy flux. Diffusivities of the order of 10−% m# s−" with Frγ ¯ 24 have been
reported by Toole et al. (1994). Ledwell & Hickey (1995) estimated diffusivities as high
as 3¬10−% m# s−" and non-dimensional dissipation rates as high as Frγ ¯ 19 in the
Santa Monica basin due to boundary mixing. However, measurements by Van Haren
et al. (1994) did not indicate any buoyancy flux, in spite of very high dissipations rates
and values of Frγ ¯ 20. The present data, characterized by relatively low Re

t
, fall in a

viscous-dominated regime. According to Ivey & Imberger (1991) this should not
provide any buoyancy flux.

The potential energy associated with an overturn of the scale of l
c
is l#

c
N # which may

be taken as a scale for the APEF (§3.6). A simple manipulation yields

ε

N(APEF)
CFr$

t
. (14)

Since the Froude numbers encountered in the experiment are in general less than unity,
(14) implies that ε}N'APEF. This shows how strong the buoyancy forces are, so that
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the potential energy associated with the overturns is much higher than the dissipation
of turbulent kinetic energy during a buoyancy (or wave) period.

4. Conclusions

An experimental study on the turbulence generated by an internal wave ray breaking
on a sloping bed was presented over a parameter range which covered subcritical,
critical and supercritical frequencies (0±83!γ! 4±5). The present configuration
differed from previous laboratory (Ivey & Nokes 1989, 1990; Taylor 1993) and
possibly field studies (Eriksen 1982, 1985; Lemckert & Imberger 1995) in that the
incident wave ray covered only a fraction of the length of the bottom slope.

Flow visualization revealed that as the incident waves became progressively
supercritical the instabilities were first initiated away from the bed. Flow visualization
and velocity measurements showed that near critical conditions the flow was confined
to a narrow region above the bed. In this case, most of the incident wave energy was
dissipated in a thin region. Thus, small values of the turbulent lengthscale l

c
and hence

low turbulent Reynolds numbers were observed. For the cases of subcritical and
supercritical incident waves, internal wave reflection from the sloping bed could be
thought of as wave–wave interaction between the incident and the reflected waves. As
given by (3), the area of the interaction region increases progressively as the waves
depart from critical conditions. The central displacement lengthscale and the turbulent
Reynolds number increased steadily up to about γE 2, after which they both started
to decrease.

The mixed fluid generated at the boundary communicated with the main water body
in the form of a horizontal intrusion which propagated along the isopycnal surface that
intersected the centre of the interaction region. In the present study, the Reynolds
number of the turbulence due to wave breaking was low. This was also reflected in the
spreading of the intrusion which followed a two-dimensional viscous–buoyancy
balance.

The efficiency of mixing in converting incident wave energy into potential energy by
the breaking of internal waves at the slope is still debatable. Efficiencies as high as 0±2
have been reported in laboratory experiments by Ivey & Nokes (1989) ; Taylor (1993)
reported slightly lower values ; certain field studies showed higher conversion efficiencies
(Lemckert & Imberger 1995) while some did not identify any fluxes (Van Haren et al.
1994). Data points from the present study shown in Fr

t
,Re

t
space (figure 19) indicate

that no buoyancy flux should occur in the parameter range considered. However, there
is enough buoyancy flux taking place in the wave interaction region to sustain a weak
buoyancy–viscous intrusion. The conversion is insignificant in that no measurable
change in the mean density gradient was observed (figure 18). On the other hand, in
lakes the benthic fluid carries abundant nutrients, hence such intrusions distribute the
nutrients essential for plant and animal life. Thus, from a biological point of view in
terms of transporting nutrient-rich benthic water into the interior, the mixing along
the slope driven by the wave breaking is an important means of exchange between
boundary layer and the interior.

The present experiments considered only the case where the incoming waves were
monochromatic and two-dimensional before the initiation of instabilities. To
understand the problem fully, the three-dimensional nature of the flow field has to be
examined. However, the complexities that exist in natural water bodies, compared to
the simplified laboratory and theoretical models, add immense difficulties to the
understanding of the important role played by the turbulent benthic boundary layer.
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Therefore, it is natural to extend the analysis of wave breaking to more realistic
situations encountered in nature. The beds found in the natural environment are non-
uniform, rough, and far from being planar. Gilbert & Garrett (1989) considered the
case of wave breaking on irregular bottom slopes and concluded that the energy
enhancement and associated dissipation rates are higher on a convex topography than
on a concave topography. Experiments on wave breaking on hydraulically rough beds,
or beds of soft sediments, have not yet been looked at. The interaction of a very thin
sediment layer at the bed and a relatively thick benthic boundary layer in the context
of transport of nutrients remains to be examined.
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